

Course Code	Course Name	CO Code	СО
17MAT31	Engineering Mathematics - 3	CO1	Know the use of periodic signals and Fourier series to analyze circuits and system communication.
		CO2	Explain the general linear system theory for continuous-time signals and digital signal processing using the Fourier transforms and Z-transform.
		CO3	Employ appropriate Numerical methods to solve algebraic and transcendental equations.
		CO4	Apply Greens theorem, Divergence theorem and Stokes theorem in various applications in the field of elector-magnetic and gravitational fields and fluid flow problems.
		CO5	Determine the extremals of functionals and solve the simple problems of the calculus of variations.
17EC32	Electronic Instrumentation	CO1	Describe instrument measurement errors and the operation of Ammeters, Voltmeters, Multimeters and develop circuits for multirange Ammeters and Voltmeters.
		CO2	Understand the functional, operation of Digital voltmeters and describe the instruments to measure voltage, frequency, time period, phase difference of signals, rotation speed, capacitance and pH of solutions.
		CO3	Discuss the functioning and types of Oscilloscopes and Signal generators
		CO4	Describe operation of various Analog measuring instruments and AC/DC bridges for
		0.04	passive component for frequency measurements
		CO5	Learn and discuss the significance and working of different types of transducers
	Analog Electronics	CO1	Acquire the basic knowledge of Analog Electronic Devices such as FET, MOSFET, UJT.
		CO2	Develop the ability to analyze the performance characteristics and parameters of BJT and FET amplifier using small signal model.
17EC33		CO3	Analyse the parameters which affect the low frequency and high frequency responses of BJT and FET amplifiers.
		CO4	Analyse the performance of feedback amplifiers and oscillators.
		CO5	Acquire and Evaluate the efficiency of Power Amplifiers classifications and voltage regulators.
	Digital Electronics	CO1	Develop simplified switching equation using Karnaugh Maps and Quine- McClusky techniques.
		CO2	Explain the operation of decoders, encoders, multiplexers, demultiplexers, adders, subtractors and comparators
17EC34		CO3	Explain the working of Latches and Flip Flops (SR.D.T and JK).
		CO4	Design Synchronous/Asynchronous Counters and Shift registers using Flip Flops.
		CO5	Develop Mealy/Moore Models and state diagrams for the given clocked sequential circuits.
17EC35	Network Analysis	CO1	Determine currents and voltages using source transformation/ source shifting/ mesh/ nodal analysis and reduce given network using star-delta transformation/source transformation/ source shifting.
		CO2	Solve network problems by applying Superposition/ Reciprocity/ Thevenin's/ Norton's/ Maximum Power Transfer/ Millman's Network Theorems and electrical laws to reduce circuit complexities and to arrive at feasible solutions.
		CO3	Calculate current and voltages for the given circuit under transient conditions and Apply Laplace transform to solve the given network.
		CO4	Evaluate for RLC elements/ frequency response related parameters like resonant

			frequency, quality factor, half power frequencies, voltage across inductor and
			capacitor, current through the RLC elements, in resonant circuits
		CO5	Solve the given network using specified two port network parameter like Z or Y or T or h.
17EC36	Engineering Electromagnetics	CO1	Evaluate problems on electric field due to point, linear, volume charges by applying
		CO2	Determine potential and energy with respect to point charge and capacitance using
			Laplace equation
		CO3	Calculate magnetic field, force, and potential energy with respect to magnetic materials
		CO4	Apply Maxwell's equation for time varying fields, EM waves in free space and conductors.
		CO5	Evaluate power associated with EM waves using Povnting theorem.
		CO1	Test circuits of rectifiers, clipping circuits, clamping circuits.
		CO2	Determine the characteristics of BJT and FET amplifiers.
17501.07	T/ECL37-	CO3	Design and test the BJT/FET amplifiers and plot the frequency response.
17ECL37	Analog Electronics Lab	CO4	Compute the performance parameters of BJT power amplifiers and voltage regulators.
		CO5	Design and test the BJT/FET Oscillators.
		CO1	Demonstrate the truth table of various expressions and combinational circuits using
			logic gates.
		000	Design and test various combinational circuits such as adders, subtractors,
17ECL38	17ECL38-Digital Electronics Lab	CO2	comparators, multiplexers.
		CO3	Realize Boolean expression using decoders.
		CO4	Construct and test flips-flops, counters and shift registers.
		CO5	Simulate full adder and up/down counters.
		CO1	Learn in details with examples To assimilate and get familiarized with basic information about Indian constitution
	17CDU20/40		Specify in details with examples provide overall legal literacy to the young
	Constitution of	CO2	technograts to manage complex societal issues in the present scenario.
	India, Professional Ethics and Human Rights		Learn the characteristics of To identify their individual roles and ethical
17CPH39/49		CO3	responsibilities towards society.
		CO4	Specify in depth To understand engineering ethics & responsibilities
		001	Deliberate in details with application if applicable. To understand engineering ethics
		CO5	& responsibilities through the learning of these tonics students will be able to
			understand human rights/ values and its implications in their life
			Solve first order ordinary differential equation arising in flow problems using single
	Engineering Mathematics - 4	CO1	step and multistep numerical methods
			Solve second order ordinary differential equation arising in flow problems using
		CO2	single step numerical methods and Illustrate problems of potential theory,
17MAT41			quantum mechanics and heat conduction by employing notions and properties
			of Bessel's functions and Legendre's polynomials.
		CO3	Explain the concepts of analytic functions, residues, poles of complex potentials and
			describe conformal and Bilinear transformation arising in field theory and
			signal processing.
		CO4	Develop probability distribution of discrete, continuous random variables and joint
			probability distribution occurring in digital signal processing, information

			theory and design engineering.
		CO5	Demonstrate testing of hypothesis of sampling distributions and illustrate examples of
		005	Markov chains related to discrete parameter stochastic process.
		CO1	Classify the signals as continuous/discrete, periodic/aperiodic, even/odd,
			energy/power and deterministic/random signals. Determine the linearity, causality,
			time-invariance and stability properties of continuous and discrete time systems.
		CO2	Develop input output relationship for linear time invariant system and Compute the
17EC42	Signals and Systems		response of a Continuous and Discrete LTI system using convolution integral
			and convolution sum.
		CO3	Understand System interconnection, system properties in terms of impulse response,
			step response. Determine the spectral characteristics of continuous and discrete
			time signal of Periodic Signals using Fourier analysis.
		004	Determine the spectral characteristics of continuous and discrete time signal of
		CO4	Aperiodic Signals using Fourier analysis. Understand the process of sampling
			and reconstruction of signals.
		CO5	onderstand the basic concept of Z-transform, inverse Z- transform and to develop the
			Develop the methametical model of machanical and electrical systems and develop
		CO1	transfer function for a given control system using block diagram reduction techniques
			and signal flow granh method
		CO2	Determine the time domain specifications for first and second order systems
		002	Determine the stability of a system in the time domain using Routh Hurwitz criterion
17EC43	Control Systems	CO3	and Root locus technique.
		CO4	Determine the stability of a system in the frequency domain using Nyquist and bode
			plots.
		CO5	Understand the basic concept of Z-transform and to develop the ability to analyze
			system in Z transform. Invert Z-transform by power-series expansion and/or
			Partial Fraction Expansion.
		CO1	Determine the performance of different amplitude modulation and demodulation
	17EC44- Principles of Communication Systems	COI	techniques in time and frequency domain
		CO2	Determine the performance of different angle modulation and demodulation
			techniques in time and frequency domain
		CO3	Characterize analog signals in time domain as random processes and in frequency
17EC44		CO4	Characterize influence of channel on performance of analog communication systems
		04	Characterize influence of channel on performance of analog communication systems.
			Understand the characteristics of rules amplitude modulation rules resition
		CO5	modulation and pulse code modulation systems
			modulation and pulse code modulation systems
			Evaluin On Amp circuit and parameters including CMPP DSPP Input & Output
17EC45	Linear Integrated Circuits	CO1	Impedances and Slew Rate Design On-Amp based Inverting Non-inverting and
		001	Summing & Difference. Amplifier.
		CO2	AC Amplifiers including Voltage Follower. Test circuits of Op-Amp based Voltage/
			Current Sources & Sinks, Current, Instrumentation and Precision Amplifiers.
		CO3	Test circuits of Op-Amp based linear and non-linear circuits comprising of limiting,
			clamping, Sample & Hold, Differentiator/ Integrator Circuits, Peak Detectors,
			Oscillators and Multiplier & Divider.
		CO4	Design first & second order Low Pass, High Pass, Band Pass, Band Stop Filters and

			Voltage Regulators using Op-Amps
		CO5	Explain applications of linear ICs in phase detector, VCO, DAC, ADC and Timer.
		CO1	Explain the History and Evolution of microprocessors architecture of 8086, CISC &
		COI	RISC, Von Neumann and Harvard CPU architecture.
			Explain how each assembly language instructions functions with the Intel family and
17EC46	Microprocessor	CO2	Illustrate the different types of microprocessor instructions with suitable
			example programs.
		CO3	Illustrate the structure of stack and interrupts with suitable examples.
		CO4	Illustrate 8086 to static memory chips and 8255, 8254,0808 ADC, 0800 DAC,
			keyboard, Display and Stepper motors.
		CO5	Use INT 21 DOS interrupt function calls to handle keyboard and display.
		CO1	Write and execute 8086 ALP to perform data transfer, arithmetic and logical
			operations.
	17ECL47- Microprocessor	CO2	Write and execute 8086 ALP to perform branch and loop operations.
		CO3	Write and execute 8086 ALP to sort and search elements in a given array and utilize
17ECL47			procedures and macros in programming 8086.
	Lab	CO4	Perform string transfer, string reversing, searching a character in a string with string
			manipulation instructions of 8086 and DOS functional calls.
		CO5	Demonstrate the interfacing of 8086 with seven segment display, matrix keyboard,
		005	logical controller, stepper motor, ADC, DAC and LDR for simple applications.
	17ECL48-Linear ICs and Communication Lab	C01	Illustrate the pulse and flat top sampling techniques using basic circuits.
		CO2	Demonstrate addition and integration using linear ICs, and 555 timer operations to
		002	generate signals/pulses.
17ECL48		CO3	Demonstrate AM and FM operations and frequency synthesis.
		CO4	Design and illustrate the operation of instrumentation amplifier, LPF, HPF, DAC and
			oscillators using linear IC.
		C05	Demonstrate BJT mixer & DSBSC
		CO1	Understand Kannada as administrative Language, Patra Vyavahara & Kannada
			Grammer.
	17KKM39/49- KANNADA MANASU	CO2	Become Familiar about Da. Ka. Bendre, Dr. Sir. M Visnvesnvaraya, Snivarama
17VVM20/4		<u> </u>	Collected information shout nosts & Authons like Triveni Su Dam Eldundi D
$1/\mathbf{K}\mathbf{N}$		CO3	Lankash K P. Doornachandra Tojaswi Gandi story by Basagara halli Pamanna
9-LCE		├	Analyse the works of Balgive heady by Siddelingsich Elle hudugivere kapesen &
		CO4	story Neethy
			Understand Parisara Lakhana Vrutthi shikshanadalli Kannada madyama & Konaya
		CO5	gowda
			To Read and understand the simple words in Kannada language, meaning in English
	17KKL39/49- KANNADA KALI	CO1	equivalent words in english grammar form the sentences in kannada language
		COI	dialogue creation learn about epics
17KKL39/4 9-ECE		CO2 CO3	To learn Kannada for Communication enquiries sentence formation request writing
			conversations and meaning in English adjectives
			To learn creating present tense kannada sentences notential forms no-nast
			continuous imperative understanding and answering
			Learn to form Past tense sentences, discussing about a film describing brindayan
		CO4	garden.
		CO5	To learn to converse routine activities of a student, grammar, present, past and perfect
			negations, reflexive, telephonic conversations, and to create some interest on

DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING 2017 SCHEME CO's

Kannada Language and Literature.