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Abstract--- The magneto hydrodynamic flow of a liquid in a strait with flexible, in a pattern constricting walls 

(peristaltic flow) is of concern in correlation by means of convinced troubles of the progress of conductive 

anatomical fluid flows, e.g., the blood, apparatus which are used to transfer blood and necessitate for research on the 

process of a peristaltic MHD compressor. Agrawal et.al (1984) considered the consequence of affecting magnetic 

ground on blood stream. Agarwal.et.al considered a plain statistical representation for blood throughout a uniformly 

divided strait by means of elastic surface fortifications executing peristaltic impressions as wave. The outcome 

discovered shows, swiftness of the fluid rises as change happens in magnetic field. 
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I. Introduction 

The magneto hydrodynamic flow of a liquid in a strait with flexible, in a pattern constricting walls (peristaltic 

flow) is of concern in correlation by means of convinced troubles of the progress of conductive anatomical fluid 

flows, e.g., the blood, apparatus which are used to transfer blood and necessitate for research on the process of a 

peristaltic MHD compressor. Agrawal et.al (1984) considered the consequence of affecting magnetic ground on 

blood stream. Agarwal.et.al considered a plain statistical representation for blood throughout a uniformly divided 

strait by means of elastic surface fortifications executing peristaltic impressions as wave. The outcome discovered 

shows, swiftness of the fluid rises as change happens in magnetic field. The peristaltic stream of a MHD fourth rank 

flow in a planer channel has deliberated by “Hayat et al” (2007). Ali et al. (2008) have investigated the effect of slip 

condition on the “peristaltic stream” of a Newtonian flowing with variable viscosity with influence of “magnetic 

field”. peristaltic motion of a Carreau fluid which is non linear, along with effect’s of a magnetic field in a leaning 

simple strait was studied by Subba Reddy and Gangadhar (2010). Subba Narasimhudu and Subba Reddy (2017) 

have studied the “Hall effects on the peristaltic flow of a Newtonian fluid in a channel”. Eldabe (2015) considered 

the Hall Effect and its influence on a third order fluid with peristalsis and in presence of porous with heat and mass 

transfer.  

On basis of the above observations, we deliberate the outcome of hall on the peristaltic stream of a Newtonian 

fluid all the way through a porous intermediate in an inclined planar strait with the postulation of elongated 

wavelength. One of the closed outline explanation is found for axial velocity and pressure gradient. The property of 

diverse budding parameters on time-averaged volume flow rate is discussed along with the plots.  

II. Geometric Representation (Mathematical) 

We think about the peristaltic pumping of a conducting Newtonian fluid flow during a porous medium in a 

waterway with inclination   of half-width  . A longitudinal train of progressive sinusoidal impression takes place 

on the superior and inferior walls of the channel. On confining our conversation to the 0.5 part of the waterway as 

revealed in the Fig.1. 
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Deformation of the wall equation is considered as 

   
2

, sinH X t a b X ct




 
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 
      (2.1) 

Here b represents the amplitude,   represents the wave length and c represents the wave speed 

“Under the assumptions that the channel length is an integral multiple of the wavelength   and the pressure 

difference across the ends of the channel is a constant, the flow becomes steady in the wave frame  ,x y  moving 

with velocity c away from the fixed (laboratory) frame  ,X Y ”. The transformation between these two frames is 

given by  

 ,  ,   ,   x X c t y Y u U c v V       and  ( )  ( ,  ),p x P X t    (2.2) 

Where  ,  u v and  ,  U V  are the velocity components, “ p  and P  are pressures in the wave and fixed 

frames of reference, respectively”.  

 

Figure 1: Substantial Representation 

The governing flow equations in wave frame are  
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Where  here represents density,   here represents electrical conductivity, 
0B  here represents strength of 

magnetic field, m  here represents Hall parameter, k  is the permeability of the permeable intermediate. 

The dimensional boundary conditions are 

u c    at y H        (2.6) 

0
u

y


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
  at 0y           (2.7) 

On considering non dimensional parameteres 
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Into equations (2.3) to (2.5), we obtain 
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Re  here represents Reynolds number, M  here represents Hartmann number and Da  here represents Darcy 

number.  

Using long wavelength (i.e., 1  ) approximation, the equations (2.9) and (2.10) become  

2
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where 
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as of Eq. (2.12), it is graspable that p  is self-governing of y . for that reason Eq. (2.11)can be rewritten as 

2
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The subsequent non dimensional boundary situation are specified as 

1u     at  1 sin 2y h x         (2.14) 
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Knowing the velocity, the volume stream rate q  in a signal surrounding position is considered as 

0

h

q udy  .         (2.17) 

The immediate stream Q ( , )X t  in the practical approach surrounding is 
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The time averaged quantity stream rate Q
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 of the peristaltic signal is 

specified by 
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III. Elucidation 

When Eq. (2.13) is solved in consideration of the boundary situation (2.14) and (2.15), we get 
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“The volume flow rate q  in a wave frame of reference” is specified by means of 
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From Eq. (3.3), we write 
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The pressure rise for single wavelength inthe signal surrounding is clear as  

1

0

dp
p dx

dx
            (3.4) 

As the Darcy number tends to infinity “ Da  ” and “ 0  ” our outcomes matches with outcome of 

Subbanarasimhudu and Suba Reddy (2017).  

IV. Outcomes and Conversations 

Fig. 2 depicts the disparity of heaviness ascending nature in p  among time averaged flood pace Q  for diverse 

numerals of M  keeping 0.1Da  , Re 5 , 2Fr  ,
4


  , 0.5   and 0.2m  . It is originate so as 

to, the time-averaged stream pace Q  rises in the pumping section  0p   as M rises, where as it declines in 

the free pumping  0p   and co-pumping  0p   regions when M values rises. 



Jour of Adv Research in Dynamical & Control Systems, Vol. 12, 07-Special Issue, 2020 

DOI: 10.5373/JARDCS/V12SP7/20202195 

ISSN 1943-023X                                                                                                                                                                      1003 

Received: 13 May 2020/Accepted: 15 June 2020 

The dissimilarity of heaviness rise p  among time averaged stream pace Q  for diverse values of Hall 

parameter m  with 0.1Da  , Re 5 , 2Fr  ,
4


  , 0.5   and 1M  . is depicted in F.3. It is bring 

into being that, the time averaged stream rate Q  decreases in the pumping area on escalating m , whereas it 

increases equally both in free pumping and co-pumping regions on rise in m .  

Fig. 4 Deliberates the dissimilarity of heaviness rise p  by way of time averaged stream rate Q  on behalf of 

unlike weightages of Darcy parameter Da  with 1M  , Re 5 , 2Fr  ,
4


  , 0.5  along with 

0.2m  . It is establish that, the time averaged stream pace Q  decreases in pumping section when there is a 

increase in Da , while it increases in free pumping as well as in co-pumping regions with increasing Da .  

The dissimilarity of heaviness rise p  by way of time averaged stream rate Q  for unlike values of Reynolds 

number Re  with 0.1Da  , 1M  , 2Fr  ,
4


  , 0.5   and 0.2m   is shown in graph. 5. It’s 

observed that, the “time-averaged flow rate Q  increases in all the pumping free pumping as well as co-pumping 

regions by way of increasing Re ”.  

Fig. 6 illustrates the dissimilarity of heaviness increase p  with time averaged stream rate Q  for diverse 

weightages of Froude number Fr  with 0.1Da  , Re 5 , 1M  ,
4


  , 0.5   and 0.2m  . It’s 

seen that, the time averaged flow rate Q  decreases in all the pumping, free pumping and co-pumping regions with 

escalating Fr .  

The deviation of heaviness rises p  together with time averaged flow rate Q  meant for diverse weight ages of 

inclination angle   through 0.1Da  , Re 5 , 2Fr  , 1M  , 0.5   and 0.2m   is shown in Fig. 7. 

It’s established that, the time averaged stream pace Q  rises in all the pumping, free pumping and co-pumping 

portions on escalating .  

Due to the difference values of heaviness rise p  through time averaged stream pace Q  for unlike weightages 

of amplitude ratio   with 0.1Da  , Re 5 , 2Fr  ,
4


  , 1M   and 0.2m   is shown in Fig. 8. 

Which deliberates that the time averaged stream pace Q  takes ascending shape when there is a ascending values 

assigned to amplitude ratio   in all regions like pumping and free pumping areas, whereas decreases with 

escalating amplitude ratio   in the co-pumping area for chosen  0p  .  

V. Conclusions 

Here in the document, the consequence of hall on the peristaltic stream of a conducting flow all the way from 

side to side a porous medium in a leaning 2-D canal with the assumption of long wavelength approximation is 

investigated. “The expressions for the velocity field and temperature field and pressure gradient are obtained 

analytically”. It is observed that, the time averaged stream rate in the pumping area rises through rise in Hartmann 
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number M , Reynolds number Re , leaning angle   and amplitude ratio  , while they decreases with rise in hall 

parameter m , Froude number Fr  and Darcy number Da .  

 

Figure 2: The Deviation in Heaviness in Ascending Direction p  with Time Averaged Flow Rate Q  for Different 

Values of M  with 0.1Da  , 0.5  , Re 5 , 2Fr  , 
4


  and 0.2m  . 

 

Figure 3: p  Changes with Time Averaged Flow Rate Q  is Explained for Diverse Numerals of Hall Parameter 

m with 0.1Da  , 0.5  , Re 5 , 2Fr  , 
4


   and 1M  .  
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Figure 4: The Changes p  with Q  for Unlike Values of Da  with 0.2m  , 0.5  , Re 5 , 2Fr  , 

4


  and 1M  . 

 

Figure 5: The Changes in p  in Association with Time Averaged Stream Pace Q  for Various Numerals of Re  

with 1M  , 0.5  , 2Fr  , 
4


  and 0.2m  .  
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Figure 6: Changes in p
 
and Time Averaged Stream Pace Q  for Unlike Values of Froude Number Fr  with 

1M  , 0.5  , Re 5 , 
4


  and 0.2m  . 

 

Figure 7: The Changes in p  and Time Averaged Stream Pace Q  for Dissimilar Numbers of   with 1M  , 

0.5  , 2Fr  , Re 5 and 0.2m  .  
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Figure 8: Changes p  with Time Averaged Stream Pace Q  for Unlike Values of Amplitude Ratio   with 

1M  , Re 5 , 2Fr  , 
4


  and 0.2m  .  
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